
wh Münzprüfer Berlin GmbH Software library for COM200/COM300/COM400

wh Münzprüfer Berlin GmbH Teltower Damm 276 D - 14167 Berlin

Software libraries
WinMDB32.dll for Windows 98/ME/2000/XP

and
libmdb.so for Linux

for communication with devices

with Multi Drop Bus protocol

Version 2.01

supports:

electronic coin selectors
electronic change givers

bill validators

As of 18th March 2003

wh Münzprüfer Berlin GmbH Software library for COM200/COM300/COM400

subject to technical modification WinMDB32/libmdb.so page 2

Table of contents

1. System requirements ...3

2. Description of the software library..3
2.1. General notes ..3
2.2. Description of the function ...3

2.2.1.1. Open and close MDB ...3
2.2.1.2. Reset all devices connected with the MDB ..4
2.2.1.3. Setting of switching lines ..4

2.2.2. The handling of a coin selector ...4
2.2.2.1. Open and close coin selector ...4
2.2.2.2. Reading out of data from coin selector...4
2.2.2.3. Setting and inquiring of coin release and sorting control ...4
2.2.2.4. Polling of coin selectors and inquiring the last poll status..5
2.2.2.5. Further functions...6

2.2.3. Handling of a change giver ...6
2.2.3.1. Opening and closing of change giver ...6
2.2.3.2. Read out data from the change giver ...6
2.2.3.3. Obtain tube status ..6
2.2.3.4. Set coin release..6
2.2.3.5. Dispense coins ...7
2.2.3.6. Dispensing a value ...7
2.2.3.7. Poll change giver and inquire the last polling status ..7
2.2.3.8. Further functions...8

2.2.4. Handling of a bill validator ...8
2.2.4.1. Open and close bill validator ..8
2.2.4.2. Read out data from bill validator...8
2.2.4.3. Read out stacker status..8
2.2.4.4. Setting of bill control ...8
2.2.4.5. Withdraw and return bills ..9
2.2.4.6. Poll bill validator and inquire the last poll status...9
2.2.4.7. Further functions.. 10

3. Example for the handling of a coin selector .. 11

wh Münzprüfer Berlin GmbH Software library for COM200/COM300/COM400

subject to technical modification WinMDB32/libmdb.so page 3

1. System requirements

A serial adapter COM200 or an USB adapter COM300 from wh Münzprüfer is required for connection
of the MDB devices.
All coin selectors of wh Münzprüfer Berlin GmbH that may be connected to the Multi Drop Bus (sub-
sequently called MDB) and all conforming bill validators and change givers with MDB are supported.

2. Description of the software library

2.1. General notes

The software is a 32-bit windows DLL which runs with Windows® 98, ME, 2000 and XP or a shared
library for Linux. Before utilisation the software must be copied to the systems’ directory of the corre-
sponding Windows version resp. to the User Lib library.
All functions belong to the type int and return an error code. This error code can either be forwarded
by the protocol layer or generated by the command layer.
Functions which return their results in the form of a structure always expect a pointer on an existing
structure which they fill with data.
The integration of DLL/shared library into personal applications is supported by the following files an-
notated in detail: mdb.h for C(++) or XMDB32_Defines.pas and XMDB_Interface.pas for Pas-
cal/Delphi. All error codes and structural definitions can also be found in these files.
All functions are only returned after all actions have been carried out by the peripheral or after a dis-
continuation due to an error. Depending on the amount of data, the communication alone takes up
between 5 and 50ms. To this, the internal processing times of the devices must also be added. The
following kinds of procedures are particularly time-consuming:

 - The reset of all devices connected to the MDB: the time of execution alone is approx. 200ms.

An even longer time span may elapse until the different devices are ready for operation.
 - The initiation of devices takes from 100ms to some seconds in change givers and bank note

readers. This is due to mechanical procedures and properties.
 - The query and setting of information about devices takes in excess 100ms because of the ac-

cess to EEPROMs.
 - The returning of coins out of a change giver takes up several seconds depending on the

amount of coins.
 - The return of a bank note out of a bill validator normally takes up to 1second.

These periods of time are only approximate values and may vary considerably, even within a type of
device, depending on the manufacturer.

All MDB devices described here give a country identification which indicates for what currency they
are set. Where several devices are connected, the library does not examine whether their country
identification is identical. If necessary, this must be examined by means of the specific application.

2.2. Description of the function

2.2.1.1. Open and close MDB

_stdcall int OpenMDB(int com_nr); (Windows)
The COM-Port stated is opened and initialized for MDB. The successful execution of this function is a
prerequisite for all further actions.
If the USB version COM300 is in use, the COM-port number can be indicated as “0”. Despite of the
installed virtual port, the USB adapter will always be found.

wh Münzprüfer Berlin GmbH Software library for COM200/COM300/COM400

subject to technical modification WinMDB32/libmdb.so page 4

_stdcall int OpenMDB_str(int tty_name); (Linux)
The tty device stated is opened and initialized for MDB. The successful execution of this function is a
prerequisite for all further actions.

_stdcall int CloseMDB();
The COM-Port/tty device which has been opened for the MDB is closed and released again.

2.2.1.2. Reset all devices connected with the MDB

_stdcall int ResetMDBDevices();
The hardware of all connected devices is reset. This may be executed directly after the initialisation of
the MDB in order to set all devices into a defined condition.

2.2.1.3. Setting of switching lines

_stdcall int SetAuxPort (char stat, char msk);
By using this function, four additional switching lines may be set at the card provided that the hard-
ware is implemented.
Stat indicates the condition requested and msk indicates whether the corresponding bit is to be af-
fected.

2.2.2. The handling of a coin selector

2.2.2.1. Open and close coin selector

_stdcall int OpenEMP();
A coin selector is opened and identified in the previously initialised MDB.

_stdcall int CloseEMP();
An open coin selector is closed.

2.2.2.2. Reading out of data from coin selector

_stdcall int GetEMPInfo (struct EMPInfo* eip);
All information relevant for coin processing is read out from the coin selector. The structure of which
eip points to contains information about the coin selector. The assignment of the money value to the
coin numbers is particularly important because it is needed when certain coins are to be blocked. For
coin selectors with sorting shafts the information about the default setting of the sorting shafts might
also be of importance.
The country identification country contains the international dialling code of the country for which the
coin selector has been installed, e.g. 0x0044 for Great Britain or an ISO 4217 currency code e.g.
0x1978 for the Euro.
The indication of the decimal place of the currency (decimals) may be useful for optimum formatting
of the amounts’ display.

2.2.2.3. Setting and inquiring of coin release and sorting control

_stdcall int GetEMPCurrent (struct EMPCurrent* ecp);

wh Münzprüfer Berlin GmbH Software library for COM200/COM300/COM400

subject to technical modification WinMDB32/libmdb.so page 5

The current settings for the coin release and for the sorting control are read out of the coin selector
and are entered into the structure to which ecp points. The meaning of the data is identical to
SetEMPCurrent() (see below).

_stdcall int SetEMPCurrent (struct EMPCurrent* ecp);
The structure to which ecp points contains the information for the coin release and for the sorting
control:

 cashbox states the number of the cash box shaft
 unlock[x] "1" releases the coin no. x , "0" blocks the coin
 incbox[x] "1" leads the coin no. x to the cash box shaft irrespective of the pre-set sorting

shaft
 tube[x] states the sorting shaft for coin no. x

The cashbox and the incbox are of no relevance for coin selectors without sorting shafts. If in doubt,
all values for tube and the value for cashbox should first be read by means of SetEMPCurrent and
should not be changed.
After the machine has been switched on, it has the following initial setting: all coins are blocked, the
diversion into the main cash box for all coins is not active and the sorting shaft assignment is set to
default values.
Should the need arise to change the setting for particular coins, it is advisable to read out the current
setting by means of GetEMPCurrent()(see below) and to change the required values in the
structure before passing on this structure to SetEMPCurrent().

2.2.2.4. Polling of coin selectors and inquiring the last poll status

_stdcall int PollEMP();
If the coin selector shall accept coins, this function has to be called up cyclically, approximately every
25 to 200 ms. By means of this function existing information is read out for the last coin processing.
The return value generally states the result of the polling and is identical with the contents of status
in EMPPollStatus. The status is a bit vector, for which the following masks are defined:

EMPP_COIN The coin selector has accepted a coin; the credit has been increased.
EMPP_RESET The last action performed by the coin selector was a reset (hard- or software).
EMPP_RETURN The reject lever at the coin selector has been operated.
EMPP_REJECT A coin has been rejected.
EMPP_NOANSWER The coin selector has not answered. The fact that the coin selector does not

answer to every poll during the coin processing does not represent an error.
EMPP_TIMEOUT Error: The coin selector did not react to the poll for a too long period of time.
EMPP_UNKNOWN Unknown error
EMPP_MDBERR An MDB error has occurred; Error code in mdberr from EMPPollStatus.

The status "0“ indicates that there was nothing to be reported and that no reactions are necessary. By
means of EMPP_COIN a windows message could be sent which informs other parts of the programme
that the credit has been adapted.
The reaction to EMPP_RETURN could lead to e.g. returning a bill in escrow position when an additional
bill validator is connected. When only one coin selector is connected, this status does not require any
further actions.
You should react to EMPP_TIMEOUT as follows: close the coin selector and all other devices which are
possibly still connected; carry out a ResetMDBDevices, re-open all devices, read them out and set
them. Should this error occur again, break off the procedure: the coin selector is defect.
The other status requires no reaction from the software during normal operation resp. they indicate
basic errors in the soft- or hardware.

_stdcall int GetEMPLastPollStat(stuct EMPPollStatus* epp);
Delivers detailed information about the result of the last poll. What has been said about the error
status under PollEMP() largely applies to all other cases.

wh Münzprüfer Berlin GmbH Software library for COM200/COM300/COM400

subject to technical modification WinMDB32/libmdb.so page 6

2.2.2.5. Further functions

_stdcall int ResetEMP();
A software reset is triggered off in the coin selector.

2.2.3. Handling of a change giver

2.2.3.1. Opening and closing of change giver

_stdcall int OpenCHG();
A change giver connected with the previously initialised MDB is opened and identified.

_stdcall int CloseCHG();
An open change giver is closed.

2.2.3.2. Read out data from the change giver

_stdcall int GetCHGInfo (struct CHGInfo* cip);
All necessary information concerning the coin processing is read out from the change giver. The struc-
ture to which cip points is filled with information about the change giver.
The assignment of the money value to the coin numbers (coin_value)is particularly important be-
cause it is needed when certain coins are to be blocked or released. What coins may be routed into
tubes (tube_coin) and the smallest dispensable coin (least_coin)are further important pieces
of information. This information is required together with details about the contents of the tubes in
order to decide whether a particular amount is to be dispensed.
The country identification country contains the international dialling code of the country for which the
change giver has been installed, e.g. 0x0044 for Great Britain or an ISO 4217 currency code e.g.
0x1978 for the Euro.
The indication of the decimal place of the currency (decimals) may be useful for the optimal format-
ting of the display of amounts.

2.2.3.3. Obtain tube status

_stdcall int SetCHGTubeStat (struct CHGTubeStat* ctp);
The filling levels and the conditions of the tubes are read and transferred into the structure. In detail
this comprises the following information: the number of coins per coin type (coinctr), whether the
corresponding tube has reached its maximal filling level (tube_full) and whether the tube is possi-
bly blocked (tube_err). This information is required when the application is to decide by itself on
the composition of coins during the dispensing operation.

2.2.3.4. Set coin release

_stdcall int SetCHGCurrent (struct CHGCurrent* ccp);
The display to which ccp points, contains the coin release. A value !=0 releases the corresponding
coin. After the switching on or after the hardware reset all coins are initially blocked. A software reset,
however, does not change the coin release!

wh Münzprüfer Berlin GmbH Software library for COM200/COM300/COM400

subject to technical modification WinMDB32/libmdb.so page 7

2.2.3.5. Dispense coins

_stdcall int DispenseCHGCoins (CHGDispense* dcp);
The number of the type of coin specified in the display is dispensed, provided that this is possible.
After the return, the array shows the actual number per dispensed coin.
Before this function is called up, it is advisable to determine what coins may be dispensed
(tube_coin in CHGInfo) and to inquire the status (filling level and possibly error) of the correspond-
ing tube by means of GetCHGTubeStat. However, this is not usually necessary since the dispense
may be performed in a much more convenient way by means of the function DispenseCHGValue
(see below).

2.2.3.6. Dispensing a value

_stcall int DispenseCHGValue (double* dvp, int force);;

A desired value shall be dispensed. The combination of coins is effected by the function. The parame-
ter “force” influences the performance if the number of coins in the tubes is not sufficient: Is it set to
“0”, in this case nothing will be dispensed, is it set to 1, pay-out is made as far as the tubes have ca-
pacity. In any case the actual amount is disbursed in “*dvp”.

2.2.3.7. Poll change giver and inquire the last polling status

_stdcall int PollCHG();
If the coin selector is to accept coins this function has to be called up cyclically approximately every 25
to 200 ms. By means of this function existing information is read out for the last coin processing. The
return value generally states the result of the polling and is identical with the contents of status in
CHGPollStatus. The status is a bit vector, for which the following masks are defined:

CHGP_DEPOSIT The coin selector has accepted a coin; the filling levels of the tubes

have changed.
CHGP_DISPENSE A coin has been dispensed manually by means of the control keys; the

filling levels of the tubes have changed.
CHGP_RESET The last action performed by the coin selector was a reset (hard- or

software).
CHGP_RETURN The reject lever at the coin selector has been operated
CHGP_REJECT A coin has been rejected.
CHGP_BUSY The change giver is busy internally
CHGP_POTBUSY The change giver is busy doing the dispense
CHGP_TIMEOUT Error: too long a time span has elapsed since the coin selector reacted

to the poll.
CHGP_UNKNOWN Unknown error
CHGP_MDBERR An MDB error has occurred; Error code in mdberr from BLVPoll-

Status

The status "0“ indicates that there was nothing to be reported and that no reactions are necessary.
E.g. under CHGP_DEPOSIT a windows message could be sent to inform the other parts of the pro-
gramme that the credit has be adapted.
The reaction to CHGP_RETURN could consist in e.g. returning a bill in Escrow-Position when an addi-
tional bill validator is connected and, if necessary, in dispensing the remaining credit in coins.
You should react to CHGP_TIMEOUT as follows: close the coin selector and all other devices which are
possibly still connected; carry out a ResetMDBDevices, re-open all devices, read them out and set
them. Bear in mind that there is no error function reported should the change giver close communica-
tion during operation via the keys.
The other status requires no reaction from the software during normal operation or suggest basic mis-
takes in the soft- or hardware.

wh Münzprüfer Berlin GmbH Software library for COM200/COM300/COM400

subject to technical modification WinMDB32/libmdb.so page 8

_stdcall int GetCHGLastPollStat(stuct CHGPollStatus* cpp);
Delivers detailed information about the result of the last poll. What has been said about the error
status under PollCHG() largely applies to all other cases.

2.2.3.8. Further functions

_stdcall int ResetCHG();
A software reset is triggered off in the change giver.

2.2.4. Handling of a bill validator

2.2.4.1. Open and close bill validator

_stdcall int OpenBLV();
A bill validator is opened and identified with the previously initialised MDB.

_stdcall int CloseBLV();
An open bill validator is closed.

2.2.4.2. Read out data from bill validator

_stdcall int GetBLVInfo (struct BLVInfo* bip);
All information necessary for the processing of bills is read out. The structure, to which bip points,
contains information about the bill validator.
The assignment of the money value to the bill numbers (bill_value)is particularly important be-
cause it is needed when certain bills are to be blocked or released. Another important information is
whether the bill validator has Escrow (escrowcap), i.e. whether the bill validator is able to hold a bill
in a position from which it may not only be stacked but also be returned again.
The country identification country contains the international dialling code of the country for which the
bill validator has been installed, e.g. 0x0044 for Great Britain or an ISO 4217 currency code e.g.
0x1978 for the Euro.
The indication of the decimal place of the currency (decimals) may be useful for the optimal format-
ting of the display of amounts.

2.2.4.3. Read out stacker status

_stdcall int GetBLVSTacker (struct BLVStacker* bsp);
The contents of the stacker are read out (bills) and it is reported whether the stacker is possibly
full (full). Should the stacker be full, a demand to empty it could be emitted.

2.2.4.4. Setting of bill control

_stdcall int SetBLVCurrent (struct BLVCurrent* bcp);
The structure to which bcp points contains the bill control. The corresponding bill may be released
(unlock) and enabled for the escrow (escrenab). See points 2.2.4.2. and 2.2.4.5 concerning the
function of Escrow.

wh Münzprüfer Berlin GmbH Software library for COM200/COM300/COM400

subject to technical modification WinMDB32/libmdb.so page 9

When the escrow is allowed for a bill, the credit shall be already increased when an accepted bill is in
thie stacker position. The credit is decreased again when the bill is returned and the credit remains
unchanged when the bill is stacked. When the escrow is blocked, an accepted bill is instantly stacked
and the credit is increased.
Without the escrow, a return of money for an accepted bill can only be effected in the form of coins via
a connected change giver, such as in the case of a vending operation being discontinued.

2.2.4.5. Withdraw and return bills

_stdcall int ReturnBLVBill;
When a bill is in the escrow position, it is returned and the credit is decreased by the corresponding
amount when the operation has been finished successfully.
When a vending operation is discontinued and the money is returned in a system with a bill validator
and change giver you could proceed in the following manner:

 - call up ReturnBLVBill – a bill which is possibly in the escrow position is returned and the credit

is decreased by the corresponding amount.
 - call up DispenseCHGValue in order to return remaining credit

_stdcall int StackBLVBill;
When a bill is in the escrow position, it is withdrawn. Since the credit has already been increased pre-
viously it remains unchanged.

Both functions may be called up "on spec". The handling of the bill validator and of the credit is carried
out correctly in both cases according to the recorded internal setting and the position of the corre-
sponding bill. A return value BLV_ESCRERR or BLV_STACKERR can be ignored. These values indicate
that no bill is in escrow position and that the action could not be carried out for this reason.

2.2.4.6. Poll bill validator and inquire the last poll status

_stdcall int PollBLV();
If the bill validator is to accept bills, this function has to be called up cyclically approximately every 25
to 200 ms. By means of this function existing information are read out for the last bill processing. The
return value generally states the result of the polling and is identical with the contents of status in
CHGPollStatus. The status is a bit vektor, for which the following masks are defined:

BLVP_BILL The bill validator has accepted a bill. The position of the bill depends on

whether the validator has Escrow and whether Escrow has been en-
abled for the bill.

BLVP_JAMMED A bill got stuck in the reader
BLVP_RESET The last action performed by the bank note reader was a reset (hard- or

software).
BLVP_REJECTED A bill has been rejected.
BLVP_BUSY The bank note reader is busy internally.
BLVP_TIMEOUT Error: too long a time span has elapsed since the bill validator reacted

to the poll.
BLVP_UNKNOWN Unknown error
BLVP_MDBERR An MDB error has occurred; Error code in mdberr from BLVPoll-

Status

The status "0“ indicates that there was nothing to be reported and that no reactions are necessary.
E.g. under BLVP_BILL a windows message could be sent off to inform the other parts of programme
that the credit has to be increased.

wh Münzprüfer Berlin GmbH Software library for COM200/COM300/COM400

subject to technical modification WinMDB32/libmdb.so page 10

You should react to BLVP _TIMEOUT as follows: close the coin selector and all other devices which
are possibly still connected; carry out a ResetMDBDevices, re-open all devices, read them out and
set them. Should the error occurs again, break off the procedure: the bill validator is defect.
The other status require no reaction from the software during normal operation or they suggest basic
mistakes in the soft- or hardware.

int GetBLVLastPollStat(stuct BLVPollStatus* bpp);
Delivers detailed information about the result of the last poll.
What has been said about the error status under PollCHG()largely applies to all other cases.

2.2.4.7. Further functions

_stdcall int ResetBLV();
A software reset is triggered off in the bill validator.

wh Münzprüfer Berlin GmbH Software library for COM200/COM300/COM400

subject to technical modification WinMDB32/libmdb.so page 11

3. Example for the handling of a coin selector

In the following. an example is given in order to explain the handling of a coin selector. It is assumed
that the default values are kept for the sorting control.

 1. Initialize MDB by means of OpenMDB()/OpenMDB_str(). Reset all devices connected to the

MDB by means of ResetMDBDevices().

 2. Open the coin selector by means of OpenEMP().

 3. Get the information to the coin selector by means of GetEMPInfo().

 4. Determine the coin values out of the structure EMPInfo. Example: the contents of

coin_value could look like this:

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

value 0,00 2,00 1,00 0,50 0,50 0,10 0,00 2,00 1,00 0,50 0,00 0,00 0,00 0,00 0,00 0,00

 This is only an example and the definitive configuration may vary and must be determined in all

cases. It may occur that coin values are stated several times. This must be taken into consid-
eration as far as the coin release is concerned.

 In special types of application the multiple entry is useful for processing a type of coin with sets
of parameters that are set with a varying scope for the acceptance of coins. Furthermore, pa-
rameters that are set with a broader scope may be blocked. Normally, all entries of a coin are
enabled.

 5. Get the current coin control by means of GetEMPCurrent().

 6. Setting of the coin release by means of SetEMPCurrent(). Example: Where only coins of 2

EUR, 1 EUR and 0,50 EUR are to be accepted in the above-mentioned coin assignment,
unlock must be configured in the structure EMPCurrent as follows:

Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Wert 0 1 1 1 0 0 0 1 1 0 0 0 0 0 0 0

 The fields incbox, tube and cashbox are not changed. This makes sure that the default

values for the sorting control are kept.

 7. In case coins are to be accepted, a cyclic polling must be carried out, e.g. via a windows timer:
 ...
 SetTimer (hWnd, 0, 200, &DoPoll);
 ...
 TIMERPROC DoPoll() {
 int pres;
 pres = PollEMP();
 if (pres & EMPP_COIN) ...;
 if (pres & EMPP_RETURN) ...; }

 8. When no more coins are to be accepted, stop the polling and block the coin selector by means

of SetEMPCurrent(). For this purpose set the whole field unlock to "0".
 The credit should be erased by means of GetEMPCredit(null, 1) during the last inquiry.

 10. Repeat the procedure beginning with point 3 for a new acceptance of coins.

 11. After the application has been finished, close the coin selector again by means of CloseEMP()

and release the COM-Ports by means of CloseMDB().

