Introduction to Cryptographic Attacks

Henning
<henning+ccchh@e-gehirn.de>

January 21, 2015

@ Crypto Basics
@ Cryptographic Primitives
@ XOR and the One Time Pad

© Attacks
@ Two Time Pad
o Birthday Attack
o CBC Padding Attack
@ Length-extension on Merkle-Damgard

@ Timing attacks
@ Weaknesses in MSCHAPV2

© HITCON Crypto Challenges
@ RSA with related messages
@ Combined Collision on short MD5/SHA1L

@ Conclusion and Outlook

Crypto Basics
oo

Cryptographic Primitives

Outline

@ Crypto Basics
@ Cryptographic Primitives

Crypto Basics
®0

Cryptographic Primitives

Block Ciphers

@ A block cipher takes a block (fixed
numbers of bits) and applies a
permutation.

@ The permutation is selected by the Mess§ge
key. (n bit)

e Formally: Two algorithms (E, D) * ?
for encryption/decryption:
E.D:K x {0,1}" — {0,1}". E(k,*)| D(k,°)
D is the inverse of E. * ?

@ Chosen permutation is not]
efficiently distinguishable from a Ciphertext

random permutation. (n bit)

Crypto Basics
oce

Cryptographic Primitives

Cryptographic Hash functions

A hash function maps a large bit string to a fixed size bit string.

Properties:

Pre-image resistance: Given h, difficult to find any message m
such that h = H(m).

Second pre-image resistance: Given my, difficult to find another
my such that my # mp and H(m1) = H(my)

Collision resistance: Difficult to find two different messages m;
and my such that H(my) = H(my)

Most hash functions fulfill even stronger assumptions, e.g. they
behave like a random oracle.

Crypto Basics
oo

XOR and the One Time Pad

Outline

@ Crypto Basics

@ XOR and the One Time Pad

Crypto Basics
0

XOR and the One Time Pad

eXclusive OR (XOR)

XOR is addition modulo 2:

alblamb
0|0 0
0|1 1
110 1
1)1 0
Properties:

Q@ Assocative: (ad®b)dc=ad (bd c)

@ Commutative: adb=b@d a

© Neutral element: 0. Thus a®0=0Pa=a2a
Q Self-inverse: adal=ada=0

Crypto Basics
oce

XOR and the One Time Pad

One Time Pad

Main idea: XORing an arbitrarily distributed bit string with a
uniformly distributed bit string results in a uniformly distributed bit
string.
How the One Time Pad works:

@ Choose a random key as long as the message.

@ XOR the message with the key.

= The resulting ciphertext can't be distinguished from a random
bit string!

Never use a key twice! It's called One Time Pad for good reason.

Attacks
[elele]

Two Time Pad

Outline

© Attacks
@ Two Time Pad

Attacks
®00

Two Time Pad

Two Time Pad

Assume we have two ciphertexts encrypted with the same pad:
co=myg® k

ca=m ®k

What information can we derive?

Co@clz(mOGBk)@(ml@k):mo@ml@k@k:mo@ml

Attacks
oceo

Two Time Pad

XORed English Plaintext

Take a look at the following ASCII characters:

Character | Bit string
SPACE | 0100000
A|[1000001
a|l100001
B|1000010
b|1100010

"

Assume mg = “AbBa"” and m; =
mg & m; = “aBbA".

_" (4 spaces), then

Attacks
ocoe

Two Time Pad

WEP and the Two Time Pad

\Y CRC

“— —
o

Encrypted with RC4(1V || kwep)

RC4 works like the One Time Pad with a generated pad
Given the same key k, the same pad is generated
Repeating IV means same key k.

There are 22* ~ 16.7 million IVs.

It was not specified how to generate an IV. Many network cards
use a counter, some of them reset it to zero after power cycle.
That way you get a collision for an IV quickly.

Note: The real world attacks on WEP were related key attacks on
RC4, not the two time pad.

Attacks
[]e}

Birthday Attack

Outline

© Attacks

o Birthday Attack

Attacks
[1e}

Birthday Attack

Birthday Attack

@ WEP: Assume every network card chooses an IV randomly.
After how many packets do you get a first collision?

@ Reminder: There are 22* ~ 16.7 million IVs.

Your guesses?

Attacks
oce

Birthday Attack

Birthday Attack

@ Named after the birthday paradox: Given n people in a room,
how large is the probability, that two people have the same
birthday? Surprisingly large: 50% with 23 people, over 99%
with 70.

@ The birthday attack now just asks: What is the probability of
a collision if you add n (“number of people”) k-length
bitstrings (“number of days in a year”) to a set?

e Or different: How large (in average) must n be to get a
collision? Anwer: ~ 1.25v/2k.

Attacks
000000

CBC Padding Attack

Outline

© Attacks

o CBC Padding Attack

CBC Padding Attack

Attacks

000000

CBC Mode Encryption

Message
block 1

Message
block 2

Message
block n

v
_>@
v

v

E(k,*) E(k,*)| E(k,*)
Ciphertext || Ciphertext) Ciphertext
Random IV 1| = oek 1 block 2 block n

CBC Padding Attack

Attacks

(o] Jele]ele]

CBC Mode Decryption

v

—D

v

Ciphertext || Ciphertext Ciphertext
Random IV 11 oek 1 block 2 block n
D(K,*) D(k,*)| D(K,*)

v

e () errrrrennn >
Message Message Message Pad
block 1 block 2 block n

Attacks
00@000

CBC Padding Attack

Padding and the Padding Oracle

“Hi Bob™: | 48 | 69 | 20 | 42 [6f [62 | 02 | 02 |

“Hi Alice”: | 48 [69 | 20 | 41 [6¢ | 69 [63 | 65 |

Random IV

Is the padding correct?

YES / NO

Attacks
000®00

CBC Padding Attack

CBC Padding Attack

/Cl,last D gD 01

Random IV

Ciphertext
block 1

Ciphertext
block 2

v

v

mg@cl

—D

v

—

? /01 if g = M2 last

Message
block 1

Message
block 2

Try to verify the output in the last message byte by applying the
rules for XOR operations.

Attacks
0000®0

CBC Padding Attack

CBC Padding Attack

Manipulate the last byte of ciphertext block 1 and try all possible
256 values of g. When you guessed the right g the padding oracle
will say yes, otherwise (except in one special case) no.

The special case is simple and easy to check: Suppose your g
produced a 02 at the end, but the payload before is also 02, in this
case the padding is valid too. If the padding oracle says yes, just
flip all bits in the byte before and check what the padding oracle
says. When it still says yes, you produced 01 and g is right,
otherwise you produced some other valid padding and your g is
wrong.

Once you have the last byte guessed correctly, set it to ¢; & g © 02
and continue to do the same thing for the byte before the last
byte, but trying to produce 02 instead of 01 (and so on ...)

Attacks
[elelelelel]

CBC Padding Attack

CBC Padding Attacks in Real Life

[4 Serge Vaudenay
Security Flaws Induced by CBC Padding — Applications to
SSL, IPSEC, WTLS.
Proceedings of In Advances in Cryptology — EUROCRYPT
2002

[Nadhem J. AlFardan, Kenneth G. Paterson
Lucky Thirteen: Breaking the TLS and DTLS Record
Protocols.
Security and Privacy (SP), 2013 IEEE Symposium on (pp.
526-540), IEEE 2013

Attacks

Length-extension on Merkle-Damgard

Outline

© Attacks

@ Length-extension on Merkle-Damgard

Attacks
[Jelele]

Length-extension on Merkle-Damgard

Insecure Message Authentication Code (MAC)

Message “Q:;» 8

S(k, m) = SHA256(k||m)

This Message Authentication Code is insecure!

Attacks
0®00

Length-extension on Merkle-Damgard

Merkle-Damgéard Construction

Message Message Message
block 1 block 2 block n

IR T
@»h—»h ----- >h—>

Pad

Attacks
coeo

Length-extension on Merkle-Damgard

Length-extension against Merkle-Damgard Construction

Message Message Message||Old | [Message|New
block 1 block 2 block n{Pad| | block a [Pad

R
@—»h—»h ----- >hT—>h—>

S HA256(k||m)
Given the length of k||m and SHA256(k|/m), we can calculate

SHA256(k||m||pad(k|/m)|/m,) without knowing k and m. This is a
valid MAC for m||pad (k| m)|m,.

Attacks
oooe

Length-extension on Merkle-Damgard

Length-extension against Merkle-Damgard Construction

To calculate a valid MAC for m||pad(k||m)||ma, we first calculate

po = pad(k|/m), which is a bit 1, followed by many bits 0, followed
by the length of k||m (64 bit big endian). You use as many bits 0

required to make the message length (including padding) the next

multiple of the block size (512 bits).

We need another padding p; with length of k||m|/m,.

Now apply h to your new block with SHA256(k||m) as previous
output of h and m,||p; as block. You may iterate h if it doesn't fit
in a block.

Return the MAC as output of h together with the message
m||pol[m,.

Attacks

Timing attacks

Outline

© Attacks

@ Timing attacks

Attacks
®000

Timing attacks

A Secure Message Authentication Code

e [55]

S(k, m) = HMACsnazse(k, m)

HMACy(k, m) = H(opad @ k||H(ipad & k|/m))

Attacks

Timing attacks

Comparing MACs

Vulnerable comparison of MACs

key = > (\x7f\xf1(\xec[...]\xa00;\xf3\xa9’
message, given_mac = get_request()
if given_mac == hmac(sha256, key, message):
process_message (message)
else:
raise Exception(’Invalid MAC!’)

This code example is insecure!

The comparison stops once one byte differs. The idea of the
timing attack is to measure this time and check how many bytes
one got right. Longer time means more correct bytes (starting at
the beginning)

Attacks

Timing attacks

Comparing in constant time

Constant time compare

def constant_time_compare(mac_a, mac_b):
if len(mac_a) !'= len(mac_b):
return False
result = 0
for a, b in zip(mac_a, mac_b):
result |=a ~ b
return result ==

Using defined function

if constant_time_compare(given_mac, correct_mac):
process_message (msg)

Attacks
oooe

Timing attacks

Time Measuring Precision

Connection to system Your guesses Crosby et al.
I
nternet 20 yis
LAN
100 ns

[§ Scott. A. Crosby, Dan S. Wallach, Rudolf H. Riedi
Opportunities and Limits of Remote Timing Attacks.
ACM Trans. Inf. Syst. Secur. 12, 3, Article 17, Jan. 2009

Attacks
000000

Weaknesses in MSCHAPv2

Outline

© Attacks

@ Weaknesses in MSCHAPV2

Attacks
©00000

Weaknesses in MSCHAPv2

MSCHAPv2

Hello

Random ServerChallenge (16 byte)

>

Y

ClientChallenge = GetRandomBytes(16)

ChallengeHash = SHA1(ClientChallenge ||
ServerChallenge ||
Username)[0:8]

NTHash = MD4(UserPassword)

ChallengeResponse = DESyrhashio0:07;(ChallengeHash)
DESyrHasnio7:141(ChallengeHash)
DESythashr14:21(ChallengeHash)

ClientChallenge, ChallengeResponse,
Username

-

Login OK

Some
magic

Attacks
0@0000

Weaknesses in MSCHAPv2

Cracking DES

A keysize of 56 bit is vulnerable to exhaustive search.

History of breaking DES:

@ 1998: Electronic Frontier Foundation built “Deep Crack” for
$250.000. Broke DES key in 56 hours.

@ 2006: Universities of Bochum and Kiel built COPACOBANA
for $10.000. Needs 6.4 days to break a DES key.

@ 2008: RIVYERA built by SciEngines can break DES key in
less than one day on average.

@ 2012: Cloudcracker offers breaking DES keys of MSCHAPv2
for $200 in less than one day.

Attacks
00®000

Weaknesses in MSCHAPv2

MSCHAPV2 — Revisited

Hello

Random ServerChallenge (16 byte)

>

Y

ClientChallenge = GetRandomBytes(16)

ChallengeHash = SHA1(ClientChallenge ||
ServerChallenge ||
Username)[0:8]

NTHash = MD4(UserPassword)

ChallengeResponse = DESyrhashio0:07;(ChallengeHash)
DESyrHasnio7:141(ChallengeHash)
DESythashr14:21(ChallengeHash)

ClientChallenge, ChallengeResponse,
Username

-

Login OK

Some
magic

Attacks
000e00

Weaknesses in MSCHAPv2

MSCHAPv2 Weaknesses

The key of the last DES operation will be padded with null bytes,
because MD4 is only 16 bytes, but we need 21 in total for the 3
DES keys. So there are only 2 bytes used in the third key thus 21©
possible keys. Trying all keys takes less than a second on a normal
PC.

The DES operations don't depend on each other. Therefore we

have to search the whole keyspace (56 bit) only once and compare
the output of the DES operation with the first and second part of
the challenge hash (the third part was already broken, see above).

Once we have the keys for the DES operations we basically have
the MD4 hash of the password, which is enough to authenticate.

Attacks
0000@0
Weaknesses in MSCHAPv2

MSCHAPv2 Weaknesses

You can also speedup a dictionary attack by calculating the MD4
hashes of your words an put them into different files according to
the last 2 bytes of the hash. Now break the last DES operation to
get the last two bytes and try the words in the matching file.
Instead of comparing n words, you just have to try 57 words.

Attacks
[eleleTelo] }

Weaknesses in MSCHAPv2

MSCHAPvV2 — More weaknesses

There are even more weaknesses in MSCHAPv2 and related
protocols, many of them are described in:

[4 Bruce Schneier, Mudge and David Wagner
Cryptanalysis of Microsoft's PPTP Authentication Extensions
(MS-CHAPV2).
Secure Networking—CQRE [Secure]'99. Springer Berlin
Heidelberg, 1999. 192-203.

HITCON Crypto Challenges

Outline

© HITCON Crypto Challenges

HITCON Crypto Challenges
00000

RSA with related messages

Outline

© HITCON Crypto Challenges
@ RSA with related messages

HITCON Crypto Challenges
©0000

RSA with related messages

Related background: RSA in a nutshell

Key generation:
@ Choose two primes p and g of approx. equal size
@ Compute N = pq (“the modulus")
@ Compute p(N) = (p—1)(g —1)
© Choose an integer e such that 1 < e < ¢(N) and e is coprime
to (N)
@ Determine d such that ed =1 (mod ¢(N))
Public key consists of e and N, the private key is d and N. p, g
and ¢(N) are discarded (unless you use CRT)
Encryption: ¢ = m® (mod N)
Decryption: m = c? (mod N)

This is textbook RSA and not suitable for real encryption!

HITCON Crypto Challenges
0®000

RSA with related messages

The challenge

Task: Decrypting RSA encrypted messages in 10 rounds.
Each round the size of the modulus is increased.

We get the ciphertexts ¢; and ¢, of two messages m; and
my = m1 + 1. m must be submitted.

After submitting the 10th decrypted message, we get the
encrypted flag (“the 11th round”)

def encrypt(bits, m):
p = random_prime(bits)
q = random_prime(bits)
n=p=*gq
assert m < n
print n
print m ** 3 / n
print (m + 1) **x 3 % n

HITCON Crypto Challenges
00e00

RSA with related messages

RSA with related messages

@ There is no message padding to destroy algebraic structure

@ If two RSA messages have a known affine relation

my = amy + 3, we can calculate m as fraction of two
polynomials.

@ For small e it's easy to find the polynomials.
Special case: e = 3:
2 3~ _ n3
/3 (CQ + 2a° ¢ [3) =m (nﬁ()d A/)
o (C2 — a3c1 + 2/33)

Plug in = =1, ¢ and ¢ and you're done :-)

@ D. Coppersmith, M. Franklin, J. Patarin, and M. Reiter.
Low-Exponent RSA with Related Messages.
Advances in Cryptology — EUROCRYPT'96 (pp. 1-9).
Springer Berlin Heidelberg.

HITCON Crypto Challenges
000®0

RSA with related messages

RSA with related messages: Implementation

Remember the formula: (with « = 3 =1 and e = 3)

¢ +2c—1
- = dN
—— m; (mod N)

Put it into sage (http://www.sagemath.org):

n = 2004894888234189647743091889973

cl = 1082466567248911881114327249964

c2 = 971721605305725141664027533790

m = ((c2 + 2%¥cl - 1) * inverse_mod(c2-c1+2, n)) 7% n
print m # Output: 466926828657365800327978837323

Write a Python script which uses telnetlib and calls sage from
command line to get m;. Ugly, but works.

http://www.sagemath.org

HITCON Crypto Challenges
ooooe

RSA with related messages

More Attacks on RSA

If you are interested in more attacks on RSA, there is a good

survey paper:
@ Dan Boneh

Twenty years of attacks on the RSA cryptosystem.
Notices of the AMS, Vol. 46, No. 2 (pp. 203-213) 1999

And some interesting side channel attacks:
@ Daniel Genkin, Adi Shamir, Eran Tromer

RSA Key Extraction via Low-Bandwith Acoustic Cryptanalysis
RSIACR Cryptology ePrint Archive 2013, 857

@ Daniel Genkin, Itamar Pipman, Eran Tromer
Get Your Hands Off My Laptop: Physical Side-Channel

Key-Extraction Attacks on PCs.
Workshop on Cryptographic Hardware and ES 2014, to appear

HITCON Crypto Challenges
00000000

Combined Collision on short MD5/SHA1

Outline

© HITCON Crypto Challenges

@ Combined Collision on short MD5/SHA1L

HITCON Crypto Challenges
®0000000

Combined Collision on short MD5/SHA1

Collision in wtf6: The Challenge

Note: | will only describe the crypto part of the challenge.

@ Task: Find a collision on wtf6, both messages must end with
“HITCON".

@ wtf6(s) is the concatenation of the first 8 bytes of md5(s)
and the last 8 bytes of shal(s)

@ Once you have a collision, your messages will be added
bytewise modulo 256 and executed as Ruby code.

HITCON Crypto Challenges
0®000000

Combined Collision on short MD5/SHA1

Collision in wtf6: The execution

Overview:

© Design Ruby code which ends with \x00 and split it into two
messages, which add up bytewise modulo 256.

@ Generate a Choosen Prefix Collision in MD5 for these
messages (see https://code.google.com/p/hashclash)

© Find a program which generates arbitrary MD5 collisions given
an IV (fastcoll)

@ Use Joux’ method to generate about 232 MD5 multicollisions

© Use the multicollisions for a Birthday Attack on the last 8
bytes of SHA1

Steps 1-3 are considered solved. This is just Googling, compiling
and executing programs.

https://code.google.com/p/hashclash

HITCON Crypto Challenges
00®00000

Combined Collision on short MD5/SHA1

Joux’ method

@ Joux method allows us to build 2t multicollisions by just
generating t hash collisions for given IVs.

@ It assumes that your hash function is an iterated hash
function (remember: Merkle-Damgard construction)

[3 Antoine Joux
Multicollisions in iterated hash functions. Application to

cascaded constructions..
Advances in Cryptology — CRYPTO 2004 (pp. 306-316).

Springer Berlin Heidelberg.

HITCON Crypto Challenges
000®0000

Combined Collision on short MD5/SHA1

Joux’ method

How it works:
Note: For simplicity we say “block”, but mean “message which
length is a multiple of the block size".

@ Assume a Collision Machine C, which given an IV, returns two
blocks by and by, such that: h(bg, iv) = h(bz,iv) and by # by
@ ivp = h(prefix)
fori=0...t—1:
bo, b1 = C(iv;)
M; = {bo, b1}
iV,'+1 = h(bo, iV,') = h(bl, iV,')
© Return My x My x - x My_4

HITCON Crypto Challenges
0000e000

Combined Collision on short MD5/SHA1

Joux’ method: Python Code

def multicollision(t, iv=md5_iv):

blocks]

last_h iv

for i in range(t):
blockO, blockl = collision_machine(last_h)
last_h = md5_raw(blockO, last_h)
blocks.append((blockO, blockl))

for collision in itertools.product(*blocks):
yield b’’.join(collision)

HITCON Crypto Challenges
00000e00

Combined Collision on short MD5/SHA1

Birthday attack on SHA1LS8

The unclever way:
Iterate over all multicollisions m and add SHA1L8(m;||"HITCON")

to a hashmap with value m;. Abort and print messages when a
collision is found.

Drawbacks:
e ~ 1.25-232 collisions to check in average (feasible)

@ Assume 8 bytes each, we need 40 GiB of RAM to store just

the hashes!
Some notes:
@ SHAILL8(m) denotes the last 8 bytes of SHA1(m)
o If mg,..., m, are multicollisions, so are

mo||suffix, ..., my||suffix

HITCON Crypto Challenges
0000000

Combined Collision on short MD5/SHA1

Birthday Attack on SHA1L8

The clever way:
@ lterate over all multicollisions m and calculate the hash
hi = SHA1L8(m;|["HITCON").
@ Take the first byte of h; as filename and append the last 7
bytes of h; and 5 bytes for i to the file.
© Periodically load each file sequentially into memory and check
for collision. Let ip and i; denote the i values of the collision.

@ Calculate the two collision messages cmg and cm; by using iy
and 71. (Just iterate the bits of i and either choose by or by
depending on the bit, see Joux’ method)

@ Return cmg||*HITCON" and c¢my||*HITCON"

More optimizations: Use a graphic card, save prefixes of SHA1

HITCON Crypto Challenges
0000000e

Combined Collision on short MD5/SHA1

Birthday Attack on SHA1L8

Some remarks on the clever way:

@ This will still take some hours! And disk space! You can't fix
that.

o If you assume 1.25 - 232 multicollisions, it will take 60 GiB of
disk space, but only 240+some MiB RAM.

@ This is clearly possible :-)

Conclusion and Outlook
000

Outline

@ Conclusion and Outlook

Conclusion and Outlook
®00

Conclusion

@ It's hard to get cryptography right
@ Even small mistakes can render a crypto system useless

@ Implementations can be insecure even if they are
mathematically correct

e Good algorithms/implementations have been extensively
reviewed

Never design cryptography yourself!
Never implement cryptography yourself!

Conclusion and Outlook
oeo

Outlook

There are many more attacks | didn’t cover

@ Whole bunch of attacks on asymmetric cryptography. We
need some number theory for that

@ Some more classical things like “Meet in the Middle”, Bad
Random Number Generators etc.

Lots of techniques in cryptoanalysis (“differential
cryptoanalysis”, “"boomerang attack” etc.)

If there is interest, | might do a sequel

Conclusion and Outlook
ooe

Literature and stuff

A good introductory book into cryptography:

[d Niels Ferguson, Bruce Schneier, Tadayoshi Kohno.
Cryptography Engineering. Design Principles and Practical
Applications.

Wiley Publishing, 2010

A good, free MOOC (Massive Open Online Course):

@ Dan Boneh.
Cryptography |.
Stanford University at Coursera.
https://www.coursera.org/course/crypto
Much theory, but still good. Includes some practical exercises.
Next run: September, 8th for 6 weeks.

https://www.coursera.org/course/crypto

